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Abstract. This paper considers the problem of controlling weighted complex dynamical networks by apply-
ing adaptive control to a fraction of network nodes. We investigate the local and global synchronization of
the controlled dynamical network through the construction of a master stability function and a Lyapunov
function. Analytical results show that a certain number of nodes can be controlled by using adaptive pin-
ning to ensure the synchronization of the entire network. We present numerical simulations to verify the
effectiveness of the proposed scheme. In comparison with feedback pinning, the proposed pinning control
scheme is robust when tested by noise, different weighting and coupling structures, and time delays.

PACS. 05.45.-a Nonlinear dynamics and chaos – 05.45.Xt Synchronization; coupled oscillators – 89.75.-k
Complex systems

1 Introduction

The problem of synchronization control has been a re-
search subject which has attracted increasing attention
since the great practical application of nonlinear systems
was recognized. Much investigative attention has been fo-
cused on either the chaotic synchronization of a few cou-
pled systems (such as master-slave systems) [1–6] or on
the synchronization of large-scale networks with regular
topological structures [7–10]. More and more studies show
that control of the complex dynamics which take place on
complex networks – such as the contemporaneous beats of
the heart cells [11], or the rhythmic applause in a concert-
hall [12] – is an issue of primary importance.

When applied, current concepts have great difficulty in
regulating the behaviour of complex dynamical networks.
On one hand, various complex networks in nature and so-
ciety consist of a large set of interconnected nodes, but
in which each node can be a dynamical subsystem. All
these coupled subsystems lead to topological and statisti-
cal similarities [13] – such as small-world effects [14] and
scale-free features [15] – which are completely removed
from traditional concepts. On the other hand, controlling
each node so that each follows a desired synchronous evo-
lution is not always an available or reasonable job (such
as in a military hierarchy or in Internet broadcast applica-
tions). For example, the synchronous beats of heart cells

a e-mail: leiwang@iipc.zju.edu.cn
b e-mail: hpdai@iipc.zju.edu.cn

are regulated by the activity of pacemaker cells situated
at the sinoatrial node [11]. Recalling the distributed na-
ture of complex networks, it is feasible to control them
by acting locally on certain nodes, and then through cou-
pling between nodes, achieving synchronization of the en-
tire network. Thus, pinning control has been proposed to
provide an insight into regulatory mechanisms for control-
ling networks of coupled dynamical systems [16–18].

The general idea of pinning control is to apply localized
feedback to a small fraction of network nodes to achieve
control over a given synchronous evolution. In considering
the heterogeneity effects of complex networks, there exist
different combination styles by selecting different nodes.
Li et al. presented two typical selection strategies [19]: (1)
“Random pinning”, wherein the pinned nodes are ran-
domly selected with uniform probability amongst all the
nodes and (2) “Selective pinning” wherein the controlled
nodes are first sorted according to some property such
as degree, weight, or centrality, and are then chosen se-
quentially. Interestingly, if the coupling strength is large
enough, the coupled dynamical network can achieve syn-
chronization by pinning only one feedback controller [20].

Many researchers have investigated the controllabil-
ity and stability problems that exist in pinning con-
trol [21–23]. In practice, networks do not obey precise
state equations without any noise or uncertainties, and
feedback gain cannot be arbitrarily large. As well, the
topologies of complex networks are often associated with
a large heterogeneity in the capacity and intensity of
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the interconnections [24–26]. Most of the early works on
pinning control have focused on symmetric unweighted
networks [18,19,21,22]. Therefore, the following question
emerges: can one solve the above problems by modify-
ing the feedback? In this paper, we present a novel pin-
ning control scheme – replacing local feedback control by a
simple adaptive control – to synchronize a given weighted
complex dynamical network.

The rest of this paper is organized as follows: a
weighted dynamical network model and its adaptive pin-
ning control scheme are presented in Section 2. In Sec-
tion 3, we investigate the local stability and global sta-
bility of the weighted network by using a master stability
function (MSF) [27] and a Lyapunov function approach,
respectively. In Section 4, numerical simulations are pro-
vided to verify the effectiveness of the proposed scheme,
and we further discuss the robustness of the adaptive con-
troller. Conclusions are finally given in Section 5.

2 Problem formulation

The dynamics of a general weighted network of N coupled
identical oscillators is described by

ẋi = f(xi) − σ

N∑

j=1

Gijh(xj), i = 1, 2, . . . , N, (1)

where xi is the n-dimensional vector of dynamical vari-
ables of the ith node, f(·) ∈ Rn describes the dynam-
ics of each individual oscillator, h(·) ∈ Rn is the out-
put function, σ is the overall coupling strength, and G =
(Gij) ∈ RN×N is the coupling matrix, which describes
the topology and weights. The entry Gij is zero if there
is no connection between node i and node j �= i, but is
negative if there is a direct influence from node j, where
|Gij | gives a measure of the strength of the interaction,
and Gii = −∑N

i=1,i�=j Gij , i = 1, 2, . . . , N , which ensures
complete synchronization of the nodes in network (1).

Hereafter, the network is assumed to be connected
without any isolated clusters, i.e., G is irreducible. In this
work, we focus on a class of weighted networks where G
is diagonalizable and has real eigenvalues. In particular,
G can be written as G = DL, where D is a nonsingu-
lar diagonal matrix, and L is a symmetric, zero row-sum,
semi-positive definite matrix [28]. For example, if the net-
work (1) is undirected and unweighted, then D is chosen
as an identity matrix and L is the Laplacian matrix of
the network. Another example is a weighted network with
weights

Gij = Lij/kβ
i ,

where ki is the degree of node i, and β is a tunable pa-
rameter [29].

The nodes are said to achieve complete synchroniza-
tion if

lim
t→∞ ||xi(t) − s(t)|| = 0, i = 1, 2, . . . , N, (2)

where the notation || · || stands for the Euclidean vector
norm, and the synchronous state s(t) ∈ Rn – usually called
synchronization manifold - is a solution for an individual
node, i.e.,

ṡ(t) = f(s). (3)

Our goal is to achieve complete synchronization by using
an adaptive pinning strategy. We apply the adaptive con-
trol on a small fraction δ (0 < δ � 1) of the nodes in the
network (1). Without loss of generality, let the first l nodes
be controlled, as identified by the set C = {c1, c2, . . . , cl},
where l = �δN� is the integer part of the real number δN .
Thus, the controlled network can be described as

ẋi = f(xi) − σ

N∑

j=1

Gijh(xj) + ui, i = 1, 2, . . . , N, (4)

Here, the control input is generated by a simple adaptive
feedback law:

ui = −σkiBi(h(xi) − h(s)), i = 1, 2, . . . , N, (5)

where Bi is a binary vector. Bi = 1 if node i is controlled,
otherwise Bi = 0, and the adaptive gains ki satisfy:

k̇i = di||h(xi) − h(s)||2, i = 1, 2, . . . , N (6)

where di > 0 and initial values ki(0) > 0(to guarantee
negative feedback).

Note that the control input ui(t) has a direct influence
only on the nodes belonging to the set C. As commonly
shown in pinning control schemes, such nodes in set C
play the role of leading the others toward the desired evo-
lution s(t).

To achieve this goal, one should decide the number of
controlled nodes l. The decision is influenced by synchro-
nizability of the network (1) and by selection strategies.
A better synchronizability will probably lead to less cost
in terms of control. Also, it should be noted that applying
different strategies for a given network will result in dif-
ferent values of l. A smaller l also means less cost. Assume
that the set C contains l nodes, where l is a fixed num-
ber. Then there are

(
N
l

)
different possible ways in which

the nodes may be chosen. As has been shown in refer-
ences [8,27,30–32], the coupling matrix G and the coupling
strength σ directly affect the synchronizability of the net-
work; these parameters also affect the detailed selection,
as follows from the above description. Thus it is not easy
to decide the selection strategy. Without further explana-
tion, for the rest of this paper, we assume G and σ to be
known.

3 Stability analysis

This section focuses on the stability analysis of the con-
trolled weighted network (4). By using a MSF and a
Lyapunov function approach, we derive the theoretical
results for local and global stability of the synchronized
state, respectively.
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3.1 Local stability analysis

If we define matrix G̃(t) = (G̃ij(t)) ∈ RN×N as

G̃ =

⎛

⎜⎜⎝

G11 + k1B1 G12 . . . G1N

G21 G21 + k2B2 . . . G2N

...
. . .

...
GN1 GN2 . . . GNN + kNBN

⎞

⎟⎟⎠ ,

then the pinned network (4) can be written as

ẋi = f(xi) − σ

N∑

j=1

G̃ijh(xj), i = 1, 2, . . . , N, (7)

where Bi = 1 for i = 1, 2, . . . , l and Bi = 0 for all i > l.
Let K(t) = diag{k1(t)B1, k2(t)B2, . . . , kN (t)BN} and

K = DK̂, where K̂ is a diagonal matrix. Therefore, the
spectrum of eigenvalues of matrix G̃ is equal to the spec-
trum of a symmetric matrix Ĝ(t), which is defined as

Ĝ(t) = D
1
2 (L + K̂(t))D

1
2 . (8)

In other words, the matrix G̃ can be diagonalized with
ρ(G̃) = ρ(Ĝ), where ρ(·) denotes the set of eigenvalues of
the corresponding matrix. Note that L is an irreducible
matrix such that L ≥ 0, and diagonal matrix K̂ ≥ 0,
we easily derive Ĝ > 0 since L + K̂ is an irreducible and
weakly diagonally dominant matrix whose off-diagonal en-
tries are all negative, where the expression L > 0 (or ≥,
<, ≤) means that the symmetric matrix L is positive (or
semi-positive, negative, semi-positive) definite. In partic-
ular, let ρ(G̃) = {λ̃1, λ̃2, . . . , λ̃N} and

0 < λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃N .

As has been shown in ref.[21], G̃ is an asymmetric matrix
whose row-sum is no longer equal to zero. We therefore
need to extend the master stability function approach to
define and assess the controlled network (4). We consider
an extended network of N+1 dynamical nodes yi(t), where
yi(t) = xi(t) for i = 1, 2, . . . , N and yN+1(t) = s(t). That
is to say, the desired synchronization manifold is given by
an extra virtual node added to the original network. Thus,
we rewrite equation (7) as

ẏi = f(yi) − σ

N∑

j=1

Gijh(yj), i = 1, 2, . . . , N, (9)

where G = (Gij) is an (N + 1) × (N + 1) square matrix
such that

G =
(

G̃ −B
0 0

)
(10)

where B = (k1B1, k2B2, . . . , kNBN )T. It is easily found
that zero is one of the eigenvalues of the matrix G. By
defining zi ∈ Rn as the corresponding eigenvector of λ̃i,

we have G̃zi = λ̃izi. Substituting equation (10) into the
above equation yields

G
(

zi

0

)
=
(

G̃zi

0

)
= λ̃i

(
zi

0

)
. (11)

Equation (11) shows that ρ(G) = ρ(G̃)∪{0}. Then we can
directly apply MSF approach to network (9).

To study the stability of the synchronized state, we
need the variational equation derived from equation (9):

ξ̇ = (IN ⊗ Df − σG̃ ⊗ Dh)ξ (12)

where IN is an N ×N identity matrix, ⊗ is the Kronecker
product notation, and Df and Dh are the Jacobian ma-
trices of functions f(·) and h(·) evaluated on the synchro-
nization manifold s(t), respectively. We assume that the
evaluation of the Jacobian of equation (9) leads to a con-
stant matrix on the synchronization manifold, which is
true for any linear coupling scheme.

Recalling the rules for block matrix manipulations us-
ing the Kronecker product [33] – namely that (1) (A ⊗
B)(C ⊗D) = (AC)⊗ (BD); (2) (A⊗B)−1 = A−1 ⊗B−1,
where A, B, C and D are matrices with proper dimen-
sions – the variational equations of equation (9) can be
diagonalized by N uncoupled equations

ξ̇i = (Df − αDh)ξi, i = 1, 2, . . . , N (13)

where α(t) = σλ̃i(t). The largest Lyapunov exponent Γ (α)
of this equation can be regarded as a master stability func-
tion which determines the linear stability of the synchro-
nized state. The synchronized state is therefore stable if
Γ (σλ̃i) < 0 for i = 1, 2, . . . , N . In other words, the dynam-
ical network (7) achieves locally asymptotically stable if
and only if,

σλ̃i(t, t > T ) ∈ S, i = 1, 2, . . . , N, (14)

where T is a sufficiently large constant, and S is the syn-
chronized region, governed by Df , Dh and s(t). To dis-
tinguish the synchronizability problem of an uncontrolled
network (1), the synchronized region S here is assumed to
be an unbounded region, i.e., S = {α|α ∈ [αmin,∞)}.

According to equation (6), the adaptive gains ki(t) for
all i = 1, 2, . . . , N evolve in proportion to the error be-
tween the output of node i and the synchronization mani-
fold. As a result, G̃ is a time-varying matrix and λ̃i(t) also
varies with time. An important result is that the ki(t) val-
ues are monotonically increasing functions, since k̇i(t) ≥ 0.
For any t1 > t2, Ĝ(t1)−Ĝ(t2) = K(t1)−K(t2) ≥ 0, which
indicates that every eigenvalue λ̃i(t) evolves with time as
a monotonically increasing function. If there exists a fixed
diagonal matrix Kc ∈ RN×N such that

σµ1(G + Kc) ≥ αmin. (15)

Equation (14) will definitely hold as time evolves, where
µ1(·) is the smallest eigenvalue of the corresponding ma-
trix. If the control law of equation (6) is replaced by a
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local injection method, K becomes the constant matrix
Kc and equation (15) is equivalent to that for feedback
pinning control [19]. In other words, there is no theoretical
differences in linear stability between the adaptive pinning
(4)–(6) and the feedback pinning method.

3.2 Global stability analysis

It is well-known that the conditions for global stability
need to be much more rigorous in comparison to those of
linear stability. For instance, the largest controllability of
the controlled network (4) is achieved by applying the pro-
posed strategy (5), (6) to each node, i.e., l = N . Then the
dynamical network (4) always achieves local synchroniza-
tion about the manifold s(t) since Kc is a positive definite
matrix. But for global stability, we cannot derive similar
results due to the complicated coupling relations. Here we
consider a simplified model, where the output function is
linear with respect to the states of nodes, in which the
coupling matrix has full rank, i.e., h(xi) = xi.

Let errors ei(t) = xi(t) − s(t), then the state equation
can be given by,

ėi = f(xi) − f(s) − σ

N∑

j=1

Gijej − σkiBiei (16)

for all i = 1, 2, . . . , N .
It is clear that the dynamical system (4) achieves

global asymptotical synchronization if the errors in equa-
tion (16) damp out. The following shows how to derive
a sufficient condition for global synchronization by using
the Lyapunov function approach. Selecting a Lyapunov
function as

V (e1, e2, . . . , eN ) =
1
2

N∑

i=1

(
eT

i ei +
σ

di
(kiBi − γ)2

)
(17)

where γ is arbitrarily chosen.
Then the derivative of V (e1, e2, . . . , eN ) along with the

synchronization manifold s(t) is

V̇ =
N∑

i=1

eT
i ėi + σ

N∑

i=1

Bi(ki − γ)eT
i ei

=
N∑

i=1

eT
i (f(xi) − f(s) − σ

N∑

j=1

G̃c
ijej)

=
N∑

i=1

eT
i [(f(xi) − f(s) − ∆ei) − (σ

N∑

j=1

G̃c
ijej − ∆ei)]

=
N∑

i=1

eT
i (f(xi) − f(s) − ∆ei)

− eT(σG̃c ⊗ In − IN ⊗ ∆)e

where ∆ = diag{∆1, ∆2, . . . , ∆n} is a diagonal matrix,
e(t) = (eT

i (t), eT
2 (t), . . . , eT

N (t))T, and G̃c = (G̃c
ij) is an

N × N constant matrix such that

G̃c = G + Kc

=

⎛

⎜⎜⎝

G11 + γB1 G12 . . . G1N

G21 G21 + γB2 . . . G2N

...
. . .

...
GN1 GN2 . . . GNN + γBN

⎞

⎟⎟⎠

It follows from the description in Section 3.1 that
µ1(G̃c) > 0, where µ1(·) is the smallest eigenvalue of the
corresponding matrix.

In order to guarantee the negativeness of the derivative
of V (e1, e2, . . . , eN), we assume that

σµ1(G̃c) − ∆i > 0, i = 1, 2, . . . , N, (18)

and for any vectors x, y ∈ Rn,

(x − y)T(f(x) − f(y) − ∆(x − y))

≤ −η(x − y)T(x − y), (19)

where η > 0. Recalling the properties of Kronecker prod-
ucts again, we have µ1(σG̃c ⊗ In − IN ⊗ ∆) = µ1(σG̃c) −
max{∆i, i = 1, 2, . . . , n}. As a consequence of assump-
tion (18) and proposition 1 (see Appendix for details),
we can deduce eT(σG̃c − ∆)e ≥ 0. Therefore, we have
V̇ ≤ −ηeTe. It is apparent that V̇ = 0 if and only if
e(t) = 0. According to the Lyapunov stability theorem,
the dynamical system (16) is asymptotically stable.

Note that in the controlled network (7), the syn-
chronous solution s(t) is assumed to be an invariant man-
ifold for linear stability analysis. Here, we suppose that
each oscillator ṡ = f(s) satisfies a Lipschitz condition, i.e.,
for two arbitrary different vectors x1

i (t) and x2
i (t), the cor-

responding trajectories should satisfy ||f(x1
i ) − f(x2

i )|| ≤
Lf

c ||x1
i − x2

i || for all time t, where Lf
c is a positive con-

stant. Many chaotic oscillators such as the Chua, Lorenz,
and Chen systems, satisfy such a condition. If we select
∆i = Lf

c for all i = 1, 2, . . . , n, then the condition of global
stability of system (7) can be rewritten as

σµ1(G̃c) > Lf
c . (20)

The same result for feedback pinning has been derived in
reference [19].

3.3 Further discussions on stability

In the two subsections above, the stability of the controlled
network (4) is governed by the smallest eigenvalue of the
matrix G̃c, where Kc ≥ 0 is a diagonal matrix whose di-
mension is equal to the number of pinned nodes, l. In
linear stability analysis, the synchronized region S is as-
sumed to be unbounded. If α ∈ [αmin, αmax] with a fixed
constant αmax, the ratio r = µN (G̃c)/µ1(G̃c) will mea-
sure the synchronizability of the network, where µN (G̃c)
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is the largest eigenvalue of the matrix G̃c. For simplic-
ity, let Kc = kcdiag{1, 1, . . . , 1, 0, . . . , 0} and kc be posi-
tive constant. The ratio r will not increase monotonically
with feedback gain kc [21]. However, for an unbounded
region, the measure µ1(G̃c) – the so-called controllabil-
ity – increases monotonically with kc. This result pro-
vides evidence that the same analytical results from feed-
back pinning can be applied to adaptive pinning. For a
given complex dynamical network (7), the controllability,
µ1(G̃c), is affected by the gain kc, the number of pinned
nodes l, and the method in which l different nodes are
selected from N nodes. The smallest eigenvalue µ1(G̃c)
increases monotonically with kc. The value of l plays a
key role; a greater l leads to most probably to a larger
µ1(G̃c). An extreme case is when synchronize the com-
plex dynamical network (4) by introducing a single adap-
tive controller (the simplest case). An obvious conclusion
is that µ1(G̃c) > ε > 0 if ε > αmin/σ from equation (15).
As a result, we can select any one node in the network to
introduce an adaptive control law (5), (6) as long as the
coupling strength σ is large enough. Another extreme case
is to apply the control law to every node (the scheme re-
sulting in the highest controllability). Then Bi = 1 for all
i = 1, 2, . . . , N . If the Lyapunov function is still selected
the same as equation (17), we can easily deduce that the
dynamical network (4), no matter how it is initialized,
will achieve global synchronization about s(t). The result
tells us that we can handle any network topology – as de-
fined in Section 2 – by using the proposed control scheme.
From the coupling strength point of view, a large number
of controlled nodes l will reduce the critical strength of
the synchronizability for a weighted complex dynamical
network. For the general case (1 < l < N), determining l
is not easy, since various combinations of selecting l nodes
will probably lead to different values µ1(G̃c). Generally
speaking, the selection procedure usually needs large-scale
computation and data processing. The related optimiza-
tion problem will be left as our future work.

4 Numerical results and discussions

In this section, we present numerical simulations to show
the effectiveness of the proposed adaptive control scheme
and give a brief discussion on the robustness of the pre-
sented control scheme. We consider a random, scale-free
network (here, we use random pseudofractal network,
RPN, see Refs. [34–36]) as the numerical model. The
model can be described as follows: the growth starts from a
single edge with two nodes. At each time step, a new node
with two edges is added to every existing node, where the
new edges are attached to both ends of the corresponding
edge. Repeating this rule will produce a desirable RPN.
The RPN exhibits the scale-free property and the small-
world effect simultaneously, with a power-law exponent
γ = 3. In the following simulations, we take Gij = Lij/kβ

ij

and the output function h(x) = x, where β is a tunable
parameter, L is the Laplacian matrix of the RPN. We use
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Fig. 1. Chaotic attractor (Chua oscillator (21)) with parame-
ters given in equation (22), where xij(t) is the jth state of the
node i, and the initial vector xi(0) = (1.5,−4.4, 0.15)T.

a Chua chaotic oscillator [37,38] as a dynamical node in
the RPN, which is described in dimensionless form by

⎛

⎝
ẋi1

ẋi2

ẋi3

⎞

⎠ =

⎛

⎝
a(xi2 − xi1 − f1(xi1))

b(xi1 − xi2) + cxi3

−dxi2

⎞

⎠ (21)

where f1(xi1) = m0xi1 + 1
2 (m1 −m0)(|xi1 +1|− |xi1 −1|).

Here, we chose the parameters as:

a = 7, b = 7
20 , d = 7,

c = 1
2 , m0 = − 1

7 , m1 = − 40
7 .

(22)

A single Chua oscillator is shown in Figure 1. The adap-
tive pinning control scheme (5), (6) is then introduced
to control the dynamical network. Figure 2 shows the er-
ror trajectories of all nodes when pinning only one node,
where eij(t) is the jth state error of node i, β = 0, indi-
cating the coupling matrix G is an unweighted symmetric
matrix. Figure 3 shows the error trajectories of all nodes
achieved by pinning two nodes with β = 1. The above two
simulations show that a dynamical network – weighted or
unweighted, symmetric or asymmetric – can be stabilized
through adaptive pinning control.

In comparison with Section 3, these analytical results
– including the local stability and global stability – are
the same as when using pinning control through local in-
jection. A question naturally arises: why replace injection
with an adaptive control law? An obvious answer is that
adaptive pinning ensures that synchronization of the com-
plex dynamical network (4) will be reached automatically
without any prior knowledge of feedback gain. Also, in us-
ing a pinning process, we can find a lower bound kmin for
different initial values ki(0) and di, where i is the selected
node.

Figure 4 shows the evolution of the adaptive gains
ki(t). However, in feedback pinning, not all negative feed-
back control schemes are able to guarantee the synchro-
nization of the whole controlled network (4). We there-
fore have to select sufficiently large feedback gains ki for
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Fig. 2. Fifty Chua oscillators coupled by an unweighted RPN
with one adaptive controller, where gains k1(0) = 1, d1 = 1,
β = 0, and coupling strength σ = 5.
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Fig. 3. Fifty Chua oscillators coupled by a weighted RPN
with two adaptive controllers, where gains k1(0) = k2(0) = 1,
d1 = d2 = 1, β = 1, and coupling strength σ = 5.
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Fig. 4. (Color on line) Evolution of adaptive gains k1(t) in
unweighted and weighted RPNs with β = 0 (blue curve) and
β = 1 (red dashed), where the parameters including the net-
work size, coupling matrix, control strategies are all the same
as in Figures 2 and 3. As for Figure 3, there are two nodes to
be controlled. The adaptive gains k1(t) and k2(t) are almost
identical, so only the evolution of k1(t) is shown.

i = 1, 2, . . . , l. A common problem is the use an over-
loaded control strength, which is obtained only through
repeated examinations. Another advantage of the pre-
sented control scheme is its strong robustness against
noise. In order to demonstrate, we introduce the quan-

tity Q(t) =
√

(
∑N

i=1 ||xi(t) − s(t)||2)/N , which is used to
measure the quality of the pinning process. We also as-
sume that there exists some disturbance to the process of
measuring the synchronization manifold at a certain time.
We then adopt feedback pinning and adaptive pinning to
control the network, where the network parameters are the
same as above. Note that we still select the same single
node to control the network. Figure 5 shows the compari-
son of the adaptive pinning and feedback pinning qualities
Q(t). From the figure, one can see that it is very hard to
tell which control scheme is better in the absence of noise
(t < 10), while the control performance of adaptive con-
trol is much better than that of feedback control in the
presence of noise (t > 10).

In previous discussions, the weighted complex dynam-
ical network is assumed to be given beforehand without
any unknown parameters. In practice, however, such an as-
sumption is unrealistic because of the complexity of these
networks, including the large-scale nodes, unknown or un-
certain coupling relations and topology, and time-delays.
In this situation, feedback pinning has difficulty in syn-
chronizing these uncertain, complex dynamical networks.
However, a concise result is that the adaptive pinning pro-
posed in this paper can always obtain stability in such
uncertain systems described as

ẋi = f(xi) − σ(t)
N∑

j=1

Gij(t)xj(t − τ(t)), i = 1, 2, . . . , N,

(23)
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Fig. 5. (Color online) Comparison of adaptive pinning and
feedback pinning qualities Q(t), where σ = 5, adaptive gain
k1(0) = 1, d1 = 1 and feedback gain k = 20. At t = 10, a white
noise is introduced to each node, and the control laws are kept
the same. It is obvious that the system under adaptive control
has a much smaller disturbance error and a faster speed of
convergence than the one under feedback control.

if l = N , where the coupling strength σ(t), coupling ma-
trix G(t) and time delay τ(t) can be any bounded uncer-
tainties. In other words, there must exist a certain con-
stant l such that 1 ≤ l ≤ N to ensure the stability of the
weighted complex dynamical network (16) since adaptive
pinning control supplies an upper bound that is larger
than the minimum control depends, independent of the
network structure.
Remark. The detailed proof described above is similar to
that of Section 3.2 if the Lyapunov functional is selected
as

V =
1
2

N∑

i=1

eT
i ei +

1
2

N∑

i=1

σ

di
(kiBi − γ)2

+
1
2

N∑

i=1

(∫ t+τ

t

ei(t − τ)Tei(t − τ)dt

)

(24)

where σ(t) ≤ σ, σ is a positive constant, and τ(t) = τ is
a time-varying function such that |τ̇ (t)| < 1.

5 Conclusion

In this paper, we have investigated synchronization prob-
lems for a weighted complex dynamical network via pin-
ning control. The general strategy is to apply an adaptive
control scheme to a small fraction of the network nodes.
By using the master stability function and the Lyapunov
function approach, we deduce theoretical results for lo-
cal and global stabilization of the synchronization man-
ifold, respectively. The analytical results show that for

an unbounded synchronized region S, the smallest eigen-
value of matrix G+Kc determines the synchronization of
the weighted complex dynamical network (4) (both local
and global synchronization), where the diagonal matrix
Kc supplies the number of controlled nodes, the feedback
strength, and the set of selected nodes. By seeking an ap-
propriate Kc, we are able to achieve our goal. All these
results are the same as those for pinning control using local
feedback. Numerical simulations show that in comparison
with feedback pinning, the proposed control strategy has
strong robustness against noise. In particular, adaptive
pinning control is still effective on a weighted uncertain
complex dynamical network with time-varying delays, as
long as a sufficient number of nodes are controlled. When
l = N , this control strategy can always ensure the syn-
chronization of the controlled networks, independent of
any knowledge of the network structure, coupling rela-
tions, or of the strength.
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Appendix A

Proposition 1. Given matrix G ∈ Rn×n. If G = DL and
µ1(G) > 0, then for any nonzero vector x ∈ Rn and i =
1, 2, . . . , n, we have xTGx > 0, where D is a nonsingular
diagonal matrix, L is a symmetric matrix, and µ1(G) is
the smallest eigenvalue of G.
Proof. The following equation holds

G = D
1
2 (D

1
2 LD

1
2 )D− 1

2 = D
1
2 ĜD− 1

2 , (25)

which can be easily derived from G = DL, where Ĝ =
D

1
2 LD

1
2 .

Equation (25) indicates that ρ(G) = ρ(Ĝ) and G can
be diagonalized, where ρ(·) is the set of eigenvalues of
the corresponding matrix. Then there exist n eigenvalues
λi ∈ R+ associated with n linearly independent vectors
yi ∈ Rn for matrix G, i = 1, 2, . . . , n. Moreover,

yT
i Gyj = λjy

T
i yj =

{
0, if i �= j

λj ||yi||2 > 0, otherwise.
(26)

In particular, for any nonzero vector x ∈ Rn, we have

x =
n∑

i=1

θiyi

where θi ∈ R and
∑n

i=1 |θi| �= 0.
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Furthermore,

xTGx =

(
n∑

i=1

θiy
T
i

)
G

⎛

⎝
n∑

j=1

θjyj

⎞

⎠

=

(
n∑

i=1

θiy
T
i

)⎛

⎝
n∑

j=1

λjθjyj

⎞

⎠ . (27)

Recalling equation (26), we have

xTGx =
n∑

i=1

λiθ
2
i ||yi||2 > 0. (28)

The proof is thus completed.
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